18732438. GEOLOCATION OF WIRELESS NETWORK USERS simplified abstract (AT&T Intellectual Property I, L.P.)

From WikiPatents
Revision as of 06:34, 1 October 2024 by Wikipatents (talk | contribs) (Creating a new page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

GEOLOCATION OF WIRELESS NETWORK USERS

Organization Name

AT&T Intellectual Property I, L.P.

Inventor(s)

Abhijeet Bhorkar of Fremont CA (US)

Baofeng Jiang of Pleasanton CA (US)

Peter Wong of Newark CA (US)

GEOLOCATION OF WIRELESS NETWORK USERS - A simplified explanation of the abstract

This abstract first appeared for US patent application 18732438 titled 'GEOLOCATION OF WIRELESS NETWORK USERS

The method described in the abstract involves selecting a machine learning model for geolocation within a specific cell of a wireless network, acquiring event data from multiple wireless devices in that cell, grouping the data into records, and using the model to predict the location of a wireless device based on the input data.

  • Selecting a machine learning model for geolocation within a specific cell of a wireless network
  • Acquiring event data from multiple wireless devices in the selected cell
  • Grouping the event data into records based on common device, cell, and timestamp
  • Using the machine learning model to predict the location of a wireless device
  • Outputting the predicted location based on the input data from the records

Potential Applications: - Enhanced location tracking for wireless devices - Improved network optimization and management - Enhanced security measures for wireless networks

Problems Solved: - Efficient geolocation within wireless networks - Enhanced data analysis for network management - Improved accuracy in predicting device locations

Benefits: - Enhanced network performance - Improved security measures - Streamlined data analysis processes

Commercial Applications: - Telecommunications industry for network optimization - IoT devices for accurate location tracking - Security companies for enhanced surveillance measures

Questions about Geolocation Technology: 1. How does the machine learning model improve location accuracy in wireless networks? 2. What are the potential challenges in implementing this technology on a large scale?

Frequently Updated Research: - Ongoing studies on improving machine learning models for geolocation accuracy - Research on enhancing data processing techniques for wireless network optimization.


Original Abstract Submitted

A method includes selecting a first machine learning model from a plurality of machine learning models that are trained for use in performing geolocation, wherein the first machine learning model is selected to perform geolocation within a first cell of a plurality of cells of a wireless network, acquiring event data from a plurality of wireless devices within the first cell, grouping the event data into a plurality of records, wherein each record of the plurality of records contains event data that indicates a common wireless device of the plurality of wireless devices, a common cell of the plurality of cells, and a common timestamp, and generating a predicted location of a first wireless device of the plurality of wireless devices, using the first machine learning model, wherein the first machine learning model outputs the predicted location in response to an input of a record of the plurality of records.