Taiwan Semiconductor Manufacturing Company, Ltd. patent applications published on September 21st, 2023

From WikiPatents
Jump to navigation Jump to search

STRUCTURE FOR MICROELECTROMECHANICAL SYSTEMS (MEMS) DEVICES TO CONTROL PRESSURE AT HIGH TEMPERATURE (18323465)

Abstract

Various embodiments of the present disclosure are directed towards an integrated chip including a microelectromechanical systems (MEMS) structure overlying a substrate. A capping structure overlies the MEMS structure. The capping structure at least partially defines a cavity. The MEMS structure is disposed in the cavity. An outgas structure adjacent to the cavity. The outgas structure comprises an amorphous material.

Inventor

Yi-Ren Wang

INTERSECTING MODULE (18323460)

Abstract

An intersecting module is provided. The intersecting module includes a plurality of internal ventilating plates. The internal ventilating plates have a plurality of orifices and include a first group of internal ventilating plates, a second group of internal ventilating plates, and a third group of internal ventilating plates arranged along a longitudinal direction. The second group of internal ventilating plates are positioned between the first group of internal ventilating plates and the third group of internal ventilating plates in the longitudinal direction. The first group of internal ventilating plates and the second group of internal ventilating plates are arranged in a staggered manner, and the second group of internal ventilating plates and the third group of internal ventilating plates are also arranged in a staggered manner.

Inventor

Yung-Syuan LAN

PARTICLE IMAGE VELOCIMETRY OF EXTREME ULTRAVIOLET LITHOGRAPHY SYSTEMS (18142913)

Abstract

A method includes irradiating a target droplet in an extreme ultraviolet light source of an extreme ultraviolet lithography tool with light from a droplet illumination module. Light reflected and/or scattered by the target droplet is detected. Particle image velocimetry is performed to monitor one or more flow parameters inside the extreme ultraviolet light source.

Inventor

En Hao LAI

PHOTONIC DEVICE AND METHODS OF FORMING SAME (17805755)

Abstract

A photonic device and related method for forming a photonic device. In some embodiments, a method of fabricating a photonic device includes forming a layer stack over a substrate. In some cases, the layer stack includes a lower cladding layer, a core layer disposed over the lower cladding layer, and an upper cladding layer disposed over the core layer. In some examples, the method further includes patterning the layer stack to form a waveguide for the photonic device. In some cases, the waveguide includes the core layer, and the core layer includes a lateral surface having a convex profile.

Inventor

Yuan-Sheng HUANG

PROTECTIVE RING STRUCTURE TO INCREASE WAVEGUIDE PERFORMANCE (18324212)

Abstract

Various embodiments of the present disclosure are directed towards an integrated chip including an optical device disposed on a substrate. A dielectric structure overlies the substrate. The dielectric structure comprises one or more sidewalls defining a light channel over a region of the optical device. A protective structure is above the optical device and disposed on opposing sides of the light channel.

Inventor

Yung-Chang Chang

CLOCK DUTY CYCLE ADJUSTMENT AND CALIBRATION CIRCUIT AND METHOD OF OPERATING SAME (18325814)

Abstract

A clock circuit includes a set of level shifters, a duty cycle adjustment circuit and a calibration circuit. The set of level shifters configured to output a first set of phase clock signals having a first duty cycle. The duty cycle adjustment circuit is configured to generate a first clock output signal responsive to a multiplexed selection signal, the first clock output signal having a second duty cycle; and adjust the second duty cycle responsive to at least a set of control signals or a phase difference between a first and second phase clock signal. The calibration circuit is configured to perform a duty cycle calibration of the second duty cycle based on an input duty cycle, and to generate the set of control signals responsive to the duty cycle calibration of the second duty cycle.

Inventor

Tien-Chien HUANG

SRAM-BASED CELL FOR IN-MEMORY COMPUTING AND HYBRID COMPUTATIONS/STORAGE MEMORY ARCHITECTURE (18321615)

Abstract

An in-memory computing device includes in some examples a two-dimensional array of memory cells arranged in rows and columns, each memory cell made of a nine-transistor current-based SRAM. Each memory cell includes a six-transistor SRAM cell and a current source coupled by a switching transistor, which is controlled by input signals on an input line, to an output line associates with the column of memory cells the memory cell is in. The current source includes a switching transistor controlled by the state of the six-transistor SRAM cell, and a current regulating transistor adapted to generate a current at a level determined by a control signal applied at the gate. The control signal can be set such that the total current in each output line is increased by a factor of 2 in each successive column of the memory cells.

Inventor

Yu-Der CHIH

INTEGRATED CIRCUIT AND METHOD OF FORMING SAME (18317690)

Abstract

An integrated circuit includes a first active region of a first set of transistors of a first type, a second active region of a second set of transistors of the first type, a third active region of a third set of transistors of the first type, a fourth active region of a fourth set of transistors of the first type and a fifth active region of a fifth set of transistors of a second type. The first, second, fourth and fifth active region have a first width in a second direction, and are on a first level. The third active region is on the first level, and has a second width different from the first width. The second active region is adjacent to the first boundary, and is separated from the first active region in the second direction. The fourth active region is adjacent to the second boundary.

Inventor

Po-Sheng WANG

Circuit Layout (18325501)

Abstract

Generating a circuit layout is provided. A circuit layout associated with a circuit is received. A parallel pattern recognition is performed on the circuit layout. Performing the parallel pattern recognition includes determining that there is a parallel pattern in the circuit layout. In response to determining that there is a parallel pattern in the circuit layout, a cell swap for a first cell associated with the parallel pattern with a second cell is performed. After the cell swap for the first cell, engineering change order routing is performed to connect the second cell in the circuit layout. An updated circuit layout having the second cell is provided.

Inventor

Shih-Wei Peng

TIMING DRIVEN CELL SWAPPING (18322156)

Abstract

A method for cell swapping is provided. A location for swapping a first cell is determined. One or more legal positions for cell placement are determined at the location. A plurality of cells is determined for of the plurality of legal positions. A second cell from the plurality of cells is determined based on timing information associated with each of the plurality. The first cell is swapped with the second cell.

Inventor

YEN-HUNG LIN

INTEGRATED CIRCUIT STACK VERIFICATION METHOD AND SYSTEM FOR PERFORMING THE SAME (18323593)

Abstract

A method of verifying an integrated circuit stack includes adding a first dummy layer to a first contact pad of a circuit, wherein a location of the first dummy layer is determined based on a location of a second contact pad of a connecting substrate. The method further includes converting the first dummy layer location to the connecting substrate. The method further includes adjusting the first dummy layer location in the circuit in response to a determination that the first dummy layer location is misaligned with the second contact pad. The method further includes performing a first layout versus schematic (LVS) check of the connecting substrate including the first dummy layer in response to a determination that the first dummy layer is aligned with the second contact pad.

Inventor

Feng Wei KUO

DATA PROCESSING METHOD, DATA PROCESSING CIRCUIT, AND COMPUTING APPARATUS (17697951)

Abstract

A data processing method, a data processing circuit, and a computing apparatus are provided. In the method, data is obtained. A first value of a bit of the data is switched into a. second value according to data distribution and an accessing property of memory. The second value of the bit is stored in the memory in response to switching the bit.

Inventor

Hung-Li Chiang

MEMORY POWER CONTROL (17832186)

Abstract

A power control device includes a first switch and a second switch. A first terminal of the first switch is configured to receive a first voltage signal in a first voltage domain, and a first terminal of the second switch is configured to receive a second voltage signal in a second voltage domain different from the a first voltage domain. A second terminal of the second switch is coupled to a second terminal of the first switch, and a control circuit is coupled to control terminals of the first switch and the second switch. The control circuit is configured to turn on the first switch in response to a decrease of a voltage level of the first voltage signal.

Inventor

Zhi-Hao Chang

Circuitry for Power Management Assertion (18325170)

Abstract

Circuits and methods are described herein for controlling a bit line precharge circuit. For example, a control circuit includes a first latch circuit and a second latch circuit. The first latch circuit is configured to receive a first light sleep signal. The first latch circuit generates a second light sleep signal according to a clock signal. The second latch circuit is configured to receive the second light sleep signal. The second latch circuit generates a third light sleep signal according to a sense amplifier enable signal. The second latch circuit provides the third light sleep signal to a bit line reading switch, so the bit line reading switch is cutoff after a sense amplifier is enabled.

Inventor

Sanjeev Kumar Jain

NON-VOLATILE STATIC RANDOM ACCESS MEMORY (nvSRAM) WITH MULTIPLE MAGNETIC TUNNEL JUNCTION CELLS (18300706)

Abstract

Disclosed herein is an integrated circuit including multiple magnetic tunneling junction (MTJ) cells coupled to a static random access memory (SRAM). In one aspect, the integrated circuit includes a SRAM having a first port and a second port, and a set of pass transistors coupled to the first port of the SRAM. In one aspect, the integrated circuit includes a set of MTJ cells, where each of the set of MTJ cells is coupled between a select line and a corresponding one of the set of pass transistors.

Inventor

Perng-Fei Yuh

INTEGRATED CIRCUITS HAVING SOURCE/DRAIN STRUCTURE AND METHOD OF MAKING (18322863)

Abstract

A method includes selectively etching a region of a substrate using a germanium-containing gas, wherein the region of the substrate consists of Si and another material, and the other material consists of SiGe. The method further includes wherein the region has a laminated structure having a SiGe film over a Si film.

Inventor

Shih-Hsien HUANG

INSPECTION APPARATUS, MANUFACTURING METHOD OF INTEGRATED CIRCUIT, AND INSPECTION METHOD (17696828)

Abstract

An inspection apparatus for inspecting a semiconductor workpiece includes a testing stage, a first seal member, a testing clamp, a second seal member, a semiconductor workpiece, and a transducer. The testing stage has a cavity. The first seal member is disposed in the cavity. The first seal member is attached to a sidewall of the cavity. The testing clamp is movably coupled to the testing stage. The second seal member is attached to the testing clamp. The semiconductor workpiece is held between the testing stage and the testing clamp by the first seal member and the second seal member. The transducer is movably disposed above the testing stage.

Inventor

Tsung-Fu Tsai

SEMICONDUCTOR DEVICE INCLUDING POLYSILICON STRUCTURES AND METHOD OF MAKING (18322882)

Abstract

A semiconductor device includes a first polysilicon structure, wherein the first polysilicon structure has a first grain size. The semiconductor device further includes a first barrier layer over the first polysilicon structure, wherein the first barrier layer has a non-uniform thickness. The semiconductor device includes a second polysilicon structure over the first barrier layer, wherein the second polysilicon structure has a second grain size different from the first grain size.

Inventor

J. J. LEE

SEMICONDUCTOR DEVICES AND METHODS OF MANUFACTURING THEREOF (18322294)

Abstract

A semiconductor device may be formed by forming a first fin and a second fin in a first area and a second area of a substrate, respectively; which may be followed by forming of a first dummy gate structure and a second dummy gate structure straddling the first fin and second fin, respectively and forming a sacrificial layer extending along a bottom portion of the second dummy gate structure. The first dummy gate structure may be replaced with a first metal gate structure, while the second dummy gate structure and the sacrificial layer may be replaced with a second metal gate structure.

Inventor

Shih-Yao Lin

PACKAGE AND MANUFACTURING METHOD THEREOF (18325104)

Abstract

A package includes a semiconductor carrier, a first die, a second die, a redistribution structure, and an electron transmission path. The first die is disposed over the semiconductor carrier. The second die is stacked on the first die. The redistribution structure is over the second die. The electron transmission path extends from the semiconductor carrier to the redistribution structure. The electron transmission path is electrically connected to a ground voltage. A first portion of the electron transmission path is embedded in the semiconductor carrier, a second portion of the electron transmission path is aside the first die, and a third portion of the electron transmission path is aside the second die.

Inventor

Ming-Fa Chen

FUSIBLE STRUCTURES (18322481)

Abstract

A fusible structure includes: a metal line in a first metal layer extending along a first direction; and a first dummy structure disposed proximal to the metal line relative to a second direction, the second direction being perpendicular to the first direction, the first dummy structure being in a second metal layer. Relative to the first direction, the metal line includes first, second and third portions, the second portion being between the first portion and third portion. Relative to a third direction that is perpendicular to the first direction and the second direction, the first portion has a first thickness and the second portion has a second thickness, the first thickness being greater than the second thickness.

Inventor

Shao-Ting WU

Porogen Bonded Gap Filling Material In Semiconductor Manufacturing (18321077)

Abstract

A device includes a substrate; a first layer over the substrate, the first layer containing a plurality of fin features and a trench between two adjacent fin features. The device also includes a porous material layer having a first portion and a second portion. The first portion is disposed in the trench. The second portion is disposed on a top surface of the first layer. The first and the second portions contain substantially same percentage of Si, substantially same percentage of O, and substantially same percentage of C.

Inventor

Bo-Jiun Lin

SEMICONDUCTOR DEVICE PACKAGE HAVING WARPAGE CONTROL AND METHOD OF FORMING THE SAME (18325205)

Abstract

A semiconductor device package and a method of forming the same are provided. The semiconductor device package includes a substrate, an electronic component, a ring structure, and an adhesive layer. The electronic component is located over a surface of the substrate. The ring structure is located over the surface of the substrate and surrounding the electronic component. The ring structure has a bottom surface facing the surface of the substrate and a top surface opposite the bottom surface. The ring structure includes recesses recessed from and located on the top surface, wherein the recesses are arranged corresponding to the corners of the substrate. The adhesive layer is interposed between the bottom surface of the ring structure and the surface of the substrate.

Inventor

Shu-Shen YEH

SEMICONDUCTOR PACKAGE AND METHOD OF FORMING THE SAME (18324514)

Abstract

A method of forming a semiconductor device includes applying an adhesive material in a first region of an upper surface of a substrate, where applying the adhesive material includes: applying a first adhesive material at first locations of the first region; and applying a second adhesive material at second locations of the first region, the second adhesive material having a different material composition from the first adhesive material. The method further includes attaching a ring to the upper surface of the substrate using the adhesive material applied on the upper surface of the substrate, where the adhesive material is between the ring and the substrate after the ring is attached.

Inventor

Kuan-Yu Huang

Memory Device and Method of Forming The Same (17815861)

Abstract

A method according to the present disclosure includes forming a plurality of transistors in a first wafer and forming a memory array in a second wafer. A first surface of the first wafer includes a first plurality of bonding pads electrically coupled to the transistors. The memory array includes a plurality of ferroelectric tunnel junction (FTJ) stacks. A second surface of the second wafer includes a second plurality of bonding pads electrically coupled to the FTJ stacks. The method also includes performing a thermal treatment to the FTJ stacks in the second wafer, and after the performing of the thermal treatment, bonding the first surface of the first wafer with the second surface of the second wafer. The transistors are coupled to the memory cells through the first plurality of bonding pads and the second plurality of bonding pads.

Inventor

Yi-Hsuan Chen

INTEGRATED CIRCUIT, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SAME (18322467)

Abstract

An integrated circuit includes a first semiconductor wafer, a second semiconductor wafer, a first interconnect structure, a first through substrate via, and an under bump metallurgy (UBM) layer. The first semiconductor wafer has a first side of the first semiconductor wafer. The second semiconductor wafer is coupled to the first semiconductor wafer, and is over the first semiconductor wafer. The second semiconductor wafer has a first device in a first side of the second semiconductor wafer. The first interconnect structure is on a second side of the first semiconductor wafer opposite from the first side of the first semiconductor wafer. The first interconnect structure includes an inductor below the first semiconductor wafer. The first through substrate via extends through the first semiconductor wafer. The first through substrate via electrically couples the inductor to at least the first device. The UBM layer is on a surface of the first interconnect structure.

Inventor

Chih-Lin CHEN

INTEGRATED CIRCUIT DEVICE AND METHOD (18323575)

Abstract

An integrated circuit (IC) device includes a power control circuit including a first transistor and a second transistor of different types. The first transistor includes a gate terminal configured to receive a control signal, a first terminal electrically coupled to a first power supply node, and a second terminal electrically coupled to a second power supply node. The second transistor includes a gate terminal configured to receive the control signal, and first and second terminals configured to receive a predetermined voltage. The first transistor is configured to, in response to the control signal, connect or disconnect the first and second power supply nodes.

Inventor

Yi-Jui CHANG

METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE AND A SEMICONDUCTOR DEVICE (18200331)

Abstract

In a method of forming a FinFET, a first sacrificial layer is formed over a source/drain structure of a FinFET structure and an isolation insulating layer. The first sacrificial layer is recessed so that a remaining layer of the first sacrificial layer is formed on the isolation insulating layer and an upper portion of the source/drain structure is exposed. A second sacrificial layer is formed on the remaining layer and the exposed source/drain structure. The second sacrificial layer and the remaining layer are patterned, thereby forming an opening. A dielectric layer is formed in the opening. After the dielectric layer is formed, the patterned first and second sacrificial layers are removed to form a contact opening over the source/drain structure. A conductive layer is formed in the contact opening.

Inventor

Tung Ying LEE

CAPACITOR CELL AND STRUCTURE THEREOF (18300563)

Abstract

Capacitor cells are provided. A first PMOS transistor is coupled between a power supply and a first node, and has a gate directly connected to a second node. A first NMOS transistor is coupled between a ground and the second node, and has a gate directly connected to the first node. A second PMOS transistor is coupled between the second node and the power supply, and has a gate directly connected to the second node. A second NMOS transistor is coupled between the first node and the ground, and has a gate directly connected to the first node. Sources of the first and second NMOS transistors share an N+ doped region in the P-type well region. The first NMOS transistor is disposed between the second NMOS transistor and the first and second PMOS transistors. Source of the first PMOS transistor is directly connected to the power supply.

Inventor

Chien-Yao HUANG

IMAGE SENSOR SCHEME FOR OPTICAL AND ELECTRICAL IMPROVEMENT (18324206)

Abstract

The present disclosure, in some embodiments, relates to an image sensor integrated chip. The image sensor integrated chip includes a substrate having a pixel region arranged between one or more trenches formed by sidewalls of the substrate. One or more dielectric materials are arranged along the sidewalls of the substrate forming the one or more trenches. A conductive material is disposed within the one or more trenches. The conductive material is electrically coupled to an interconnect disposed within a dielectric arranged on the substrate.

Inventor

Sheng-Chan Li

PASSIVATION SCHEME FOR IMAGE SENSOR SUBSTRATE (18323472)

Abstract

The present disclosure relates to an integrated chip including a substrate. A photodetector is arranged within the substrate. A trench isolation structure extends into the substrate on opposite sides of the photodetector. The trench isolation structure separates the photodetector from neighboring photodetectors. A first passivation layer is between a sidewall of the substrate and a sidewall of the trench isolation structure. The first passivation layer includes hydrogenated amorphous silicon.

Inventor

Kai-Yun Yang

STACKED IMAGE SENSORS AND METHODS OF MANUFACTURING THEREOF (17850734)

Abstract

A semiconductor device includes a first chip comprising a plurality of photo-sensitive devices, wherein the plurality of photo-sensitive devices are formed as a first array. The semiconductor device includes a second chip bonded to the first chip and comprising: a plurality of groups of pixel transistors, wherein the plurality of groups of pixel transistors are formed as a second array; and a plurality of input/output transistors, wherein the plurality of input/output transistors are disposed outside the second array. The semiconductor device includes a third chip bonded to the second chip and comprising a plurality of logic transistors.

Inventor

Chi-Hsien Chung

HIGH DENSITY CAPACITOR (17700380)

Abstract

A method of forming a capacitor is disclosed. The method includes forming a portion of a metallization layer on a substrate, forming a via layer on the substrate, and forming a first electrode between the metallization layer and the via layer, where the first electrode is electrically connected to the metallization layer. The method also includes forming a second electrode between the metallization layer and the via layer, where the second electrode is electrically connected to the via layer, and forming a dielectric layer between the first electrode and the second electrode, where the first electrode is not electrically connected to any other conductors other than through the metallization layer, and where the second electrode is not electrically connected to any conductors other than through the via layer.

Inventor

Pei-Jen Wang

CAPACITOR WITH CONTACT STRUCTURES FOR CAPACITANCE DENSITY BOOST (17697197)

Abstract

Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a capacitor. The capacitor is disposed over a semiconductor substrate. The capacitor includes a plurality of electrodes and a plurality of capacitor dielectric layers vertically stacked over one another. A contact structure overlies the plurality of electrodes, wherein the contact structure continuously extends from above a top surface of the plurality of electrodes to contact a first electrode in the plurality of electrodes. A first conductive via overlies and contacts the contact structure, wherein the first conductive via is directly electrically coupled to the first electrode by way of the contact structure.

Inventor

Yi-Chen Chen

ISOLATION STRUCTURE FOR ACTIVE DEVICES (18324201)

Abstract

The present disclosure relates to an integrated chip. The integrated chip includes a substrate. A doped isolation region is disposed within the substrate and includes a horizontally extending segment and one or more vertically extending segments extending outward from the horizontally extending segment. The substrate includes a first sidewall and a second sidewall separated from the first sidewall a non-zero distance. The non-zero distance is directly over the one or more vertically extending segments.

Inventor

Fu-Wei Yao

METHOD AND STRUCTURE FOR METAL GATE BOUNDARY ISOLATION (18319999)

Abstract

A semiconductor structure includes a first transistor adjacent a second transistor. The first transistor includes a first gate metal layer over a gate dielectric layer, and the second transistor includes a second gate metal layer over the gate dielectric layer. The first and the second gate metal layers include different materials. The semiconductor structure further includes a first barrier disposed horizontally between the first gate metal layer and the second gate metal layer. One of the first and the second gate metal layers includes aluminum, and the first barrier has low permeability for aluminum. A bottom surface of the first gate metal layer is directly on a top surface of the first barrier.

Inventor

Shahaji B. More

METHOD OF FORMING CONTACT STRUCTURES (18321609)

Abstract

A method according to the present disclosure includes receiving a workpiece that includes a first gate structure including a first cap layer thereon, a first source/drain contact adjacent the first gate structure, a second gate structure including a second cap layer thereon, a second source/drain contact, an etch stop layer (ESL) over the first source/drain contact and the second source/drain contact, and a first dielectric layer over the ESL. The method further includes forming a butted contact opening to expose the first cap layer and the first source/drain contact, forming a butted contact in the butted contact opening, after the forming of the butted contact, depositing a second dielectric layer, forming a source/drain contact via opening through the second dielectric layer, the ESL layer, and the first dielectric layer to expose the second source/drain contact, and forming a source/drain contact via in the source/drain contact via opening.

Inventor

Fu-Hsiang Su

BACKSIDE GATE CONTACT (18321620)

Abstract

Semiconductor structures and methods of forming the same are provided. A semiconductor structure according to one embodiment includes first nanostructures, a first gate structure wrapping around each of the first nanostructures and disposed over an isolation structure, and a backside gate contact disposed below the first nanostructures and adjacent to the isolation structure. A bottom surface of the first gate structure is in direct contact with the backside gate contact.

Inventor

Huan-Chieh Su

SEMICONDUCTOR DEVICE WITH CONDUCTIVE LINERS OVER SILICIDE STRUCTURES AND METHOD OF MAKING THE SEMICONDUCTOR DEVICE (17695075)

Abstract

A semiconductor device includes a semiconductor substrate, an epitaxial structure, a silicide structure, a conductive structure, and a protection segment. The epitaxial structure is disposed in the semiconductor substrate. The silicide structure is disposed in the epitaxial structure. The conductive structure is disposed over the silicide structure and is electrically connected to the silicide structure. The protection segment is made of metal nitride, is disposed over the silicide structure, and is disposed between the silicide structure and the conductive structure.

Inventor

Kuan-Kan HU

SEMICONDUCTOR DEVICE WITH REDUCED FLICKER NOISE (18323457)

Abstract

In some embodiments, a semiconductor device is provided. The semiconductor device includes a gate electrode disposed on a substrate. Source/drain regions are disposed on or within the substrate along opposing sides of the gate electrode. A noise reducing component is arranged along an upper surface of the gate electrode and/or along an upper surface of the substrate over the source/drain regions. A cap layer covers the upper surface of the gate electrode and/or the upper surface of the substrate over the source/drain regions. An inter-level dielectric (ILD) is disposed over and along one or more sidewalls of the cap layer.

Inventor

Hsin-Li Cheng

GATE SPACER AND FORMATION METHOD THEREOF (17696257)

Abstract

A method of forming a semiconductor device includes forming a sacrificial gate structure over a substrate, depositing a spacer layer on the sacrificial gate structure in a conformal manner, performing a multi-step oxidation process to the spacer layer, etching the spacer layer to form gate sidewall spacers on opposite sidewalls of the sacrificial gate structure, removing the sacrificial gate structure to form a trench between the gate sidewalls spacers, and forming a metal gate structure in the trench.

Inventor

Yi-Rui CHEN

GATE ELECTRODE EXTENDING INTO A SHALLOW TRENCH ISOLATION STRUCTURE IN HIGH VOLTAGE DEVICES (18324221)

Abstract

In some embodiments, the present disclosure relates to an integrated chip that includes a source region and a drain region arranged over and/or within a substrate. Further, a shallow trench isolation (STI) structure is arranged within the substrate and between the source and drain regions. A gate electrode is arranged over the substrate, over the STI structure, and between the source and drain regions. A portion of the gate electrode extends into the STI structure such that a bottommost surface of the portion of the gate electrode is arranged between a topmost surface of the STI structure and a bottommost surface of the STI structure.

Inventor

Yuan-Cheng Yang

POLARIZATION ENHANCEMENT STRUCTURE FOR ENLARGING MEMORY WINDOW (18325176)

Abstract

The present disclosure relates a ferroelectric field-effect transistor (FeFET) device. The FeFET device includes a ferroelectric structure having a first side and a second side. A gate structure is disposed along the first side of the ferroelectric structure, and an oxide semiconductor is disposed along the second side of the ferroelectric structure. The oxide semiconductor has a first semiconductor type. A source region and a drain region are disposed on the oxide semiconductor. The gate structure is laterally between the source region and the drain region. A polarization enhancement structure is arranged on the oxide semiconductor between the source region and the drain region. The polarization enhancement structure includes a semiconductor material or an oxide semiconductor material having a second semiconductor type that is different than the first semiconductor type.

Inventor

Chih-Yu Chang

SEMICONDUCTOR DEVICE STRUCTURE WITH INNER SPACER (18305118)

Abstract

A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a base and a fin over the base. The semiconductor device structure includes a nanostructure over the fin. The semiconductor device structure includes a gate stack wrapping around an upper portion of the fin and the nanostructure. The semiconductor device structure includes an inner spacer between the fin and the nanostructure. The semiconductor device structure includes a film in the inner spacer. A first dielectric constant of the film is lower than a second dielectric constant of the inner spacer. The semiconductor device structure includes a low dielectric constant structure in the film.

Inventor

Sai-Hooi YEONG

SEMICONDUCTOR DEVICES AND METHODS FOR INCREASED CAPACITANCE (17699300)

Abstract

Semiconductor devices having increased capacitance without increased fin height or increased chip area are disclosed. Grooves are formed across a width of the fin(s) to increase the overlapping surface area with the gate terminal, in particular with a length of the groove being less than or equal to the fin width. Methods of forming such grooved fins and semiconductor capacitor devices are also described.

Inventor

Cheng-You Tai

SEMICONDUCTOR DEVICE COMPRISING A PHOTODETECTOR WITH REDUCED DARK CURRENT (18311292)

Abstract

Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device includes a first doped region having a first doping type disposed in a semiconductor substrate. A second doped region having a second doping type different than the first doping type is disposed in the semiconductor substrate and laterally spaced from the first doped region. A waveguide structure is disposed in the semiconductor substrate and laterally between the first doped region and the second doped region. A photodetector is disposed at least partially in the semiconductor substrate and laterally between the first doped region and the second doped region. The waveguide structure is configured to guide one or more photons into the photodetector. The photodetector has an upper surface that continuously arcs between opposite sidewalls of the photodetector. The photodetector has a lower surface that continuously arcs between the opposite sidewalls of the photodetector.

Inventor

Chen-Hao Chiang

VOLTAGE REGULATOR CIRCUIT AND METHOD (18302199)

Abstract

A voltage regulator includes a control circuit configured to output a plurality of enable signals, and a power stage including a plurality of phase circuits. Each phase circuit of the plurality of phase circuits includes a node, an inductor coupled between the node and an output node of the voltage regulator, a plurality of p-type transistors coupled between the node and a power supply node of the voltage regulator, and a plurality of n-type transistors coupled between the node and a reference node of the voltage regulator. Each phase circuit of the plurality of phase circuits is configured to, responsive to the plurality of enable signals, selectively couple the node to the power supply node through a first subset or all of the plurality of p-type transistors, and selectively couple the node to the reference node through a second subset or all of the plurality of n-type transistors.

Inventor

Haohua ZHOU

LATCH CIRCUIT AND METHOD OF OPERATING THE SAME (18323583)

Abstract

A latch circuit includes first and second supply nodes having a first voltage value and a second voltage below the first voltage value, first and second input nodes, first and second output nodes, a first switch coupled between the first and second output nodes and turned on and off responsive to first and second clock signal states, first and second transistors coupled between the respective second and first output nodes and the second supply node. A second switch is coupled between a first transistor gate and the first input node, a third switch is coupled between a second transistor gate and the second input node, and each is turned on and off responsive to the first and second states. During the first state, one of the first or second transistors is part of a low resistance path from the first power supply node to the second power supply node.

Inventor

Tsung-Ching (Jim) HUANG

LEVEL SHIFTER (18197960)

Abstract

A level shifter includes an input circuit having first and second input terminals configured to receive complementary input signals at a first voltage level and a second voltage level. A cross-latch circuit is coupled to the input circuit, and has first and second output terminals configured to provide complementary output signals at a third voltage level and a fourth voltage level. The input circuit includes first and second control nodes configured to output first and second control signals at the first voltage level and the fourth voltage level based on the input signals. A tracking circuit is coupled to the input circuit and the cross-latch circuit, and is configured to input first and second tracking signals to the cross-latch circuit based on the first and second control signals, wherein the first tracking signal is the greater of the first control signal and the third voltage level, and the second tracking signal is the greater of the second control signal and the third voltage level.

Inventor

Wan-Yen Lin

MEMORY ARRAY CIRCUIT AND METHOD OF MANUFACTURING SAME (18304301)

Abstract

A method of forming a memory circuit includes generating a layout design of the memory circuit, and manufacturing the memory circuit based on the layout design. The generating of the layout design includes generating a first active region layout pattern corresponding to fabricating a first active region of a first pull down transistor, generating a second active region layout pattern corresponding to fabricating a second active region of a first pass gate transistor, and generating a first metal contact layout pattern corresponding to fabricating a first metal contact. The first metal contact layout pattern overlaps the cell boundary of the memory circuit and the first active region layout pattern. The first metal contact electrically coupled to a source of the first pull down transistor. The memory circuit being a four transistor (4T) memory cell including a first and second pass gate transistor, and a first and second pull down transistor.

Inventor

Hidehiro FUJIWARA

INTEGRATED CIRCUIT WITH EMBEDDED HIGH-DENSITY AND HIGH-CURRENT SRAM MACROS (18320494)

Abstract

A semiconductor structure includes first and second SRAM cells disposed over a substrate. Each first SRAM cell includes at least two first p-type transistors and four first n-type transistors. Each first p-type and n-type transistors includes a channel in a single semiconductor fin. Each second SRAM cell includes at least two second p-type transistors and four second n-type transistors. Each second p-type transistors includes a channel in a single semiconductor fin. Each second n-type transistors includes a channel in multiple semiconductor fins. The source/drain regions of the first p-type transistors are doped at a first dopant concentration, the source/drain regions of the second p-type transistors are doped at a second dopant concentration, and the first dopant concentration is greater than the second dopant concentration.

Inventor

Jhon Jhy Liaw

DATA BACKUP UNIT FOR STATIC RANDOM-ACCESS MEMORY DEVICE (17694974)

Abstract

Various embodiments of the present application are directed towards a memory device including a memory cell. The memory cell includes a plurality of semiconductor devices disposed on a substrate. A lower inter-metal dielectric (IMD) structure overlies the semiconductor devices. A plurality of conductive vias and a plurality of conductive wires are disposed within the IMD structure and are electrically coupled to the semiconductor devices. A data backup unit overlies the plurality of conductive vias and wires. The data backup unit includes a first source/drain structure, a second source/drain structure, a channel layer, a first memory gate structure, and a second memory gate structure. The first and second memory gate structures include an upper gate electrode over a ferroelectric layer. The first and second source/drain structures are directly electrically coupled to the semiconductor devices by way of the conductive vias and wires.

Inventor

Yun-Feng Kao

ARRAY BOUNDARY STRUCTURE TO REDUCE DISHING (18323458)

Abstract

A semiconductor structure including a semiconductor substrate and at least one patterned dielectric layer is provided. The semiconductor substrate includes a semiconductor portion, at least one first device, at least one second device and at least one first dummy ring. The at least one first device is disposed on a first region surrounded by the semiconductor portion. The at least one second device and the at least one first dummy ring are disposed on a second region, and the second region surrounds the first region. The at least one patterned dielectric layer covers the semiconductor substrate.

Inventor

Meng-Han Lin

FERROELECTRIC DEVICES AND METHODS OF FORMING THE SAME (17850429)

Abstract

A ferroelectric device and methods of forming the same are described. In some embodiments, the method includes depositing a doped hafnium dioxide layer on a layer, and the doped hafnium dioxide layer has a first oxygen vacancy concentration. The method further includes performing an ultra-high vacuum anneal process on the doped hafnium dioxide layer to increase the first oxygen vacancy concentration to a second oxygen vacancy concentration and performing an oxygen anneal process on the doped hafnium dioxide layer to decrease the second oxygen vacancy concentration.

Inventor

Georgios Vellianitis

STRUCTURE AND METHOD FOR INTEGRATING MRAM AND LOGIC DEVICES (18321269)

Abstract

A first metal layer extends across memory and logic device regions of a semiconductor structure. A dielectric barrier layer is disposed over the first metal layer. A first dielectric layer is disposed over the dielectric barrier layer in the memory device region and not in the logic device region. Multiple magnetic tunneling junction (MTJ) devices are disposed in the memory device region. A second dielectric layer is disposed in the memory device region and not in the logic device region. The second dielectric layer is disposed over the first dielectric layer and the MTJ devices. An extreme low-k dielectric layer is disposed over the dielectric barrier layer in the logic device region. A conductive feature in the logic device region penetrates the extreme low-k dielectric layer and the dielectric barrier layer to electrically connect to the first metal layer.

Inventor

Hsiang-Ku Shen

STRUCTURE AND METHOD FOR MRAM DEVICES HAVING SPACER ELEMENT (18321524)

Abstract

Methods and devices are provided that include a magnetic tunneling junction (MTJ) element. A first spacer layer abuts sidewalls of the MTJ element. The first spacer layer has a low-dielectric constant (low-k) oxide composition. A second spacer layer is disposed on the first spacer layer and has a low-k nitride composition.

Inventor

Hsiang-Ku SHEN